Universal Decompositional Semantic Parsing

Elias Stengel-Eskin
Aaron Steven White
Sheng Zhang
Benjamin Van Durme
ACL 2020
Aaron White
University of Rochester

Sheng Zhang
JHU 🎓 Microsoft Research

Ben Van Durme
Johns Hopkins University
Key Takeaways

First parsing model for UDS

Pipeline and end-to-end prediction

Unique task: graph structure + scalar values, jointly
Universal Decompositional Semantics (UDS)

- Semantics representations (often)
 - Hard to annotate
 - Brittle to non-prototypical instances

- UDS: decompose into simple questions
 - Scalar-valued, feature-based
 - Easy to annotate
 - Flexible
The Universal Decompositional Semantics Dataset and Decomp Toolkit

Aaron Steven White, Elias Stengel-Eskin, Siddharth Vashishtha, Venkata Govindarajan, Dee Ann Reisinger, Tim Vieira, Keisuke Sakaguchi, Sheng Zhang, Francis Ferraro, Rachel Rudinger, Kyle Rawlins, Benjamin Van Durme

University of Rochester, Johns Hopkins University, University of Maryland Baltimore County, Allen Institute for Artificial Intelligence, Microsoft Research, University of Texas at Austin

{aaron.white, svashis3}@rochester.edu, {estenge2, kgr, vandurme}@jhu.edu, shezhan@microsoft.com, {keisukes, rudinger}@allenai.org, ferraro@umbc.edu, {gvenkata1994, dee.ann.reisinger, tim.f.vieira}@gmail.com

Abstract

We present the Universal Decompositional Semantics (UDS) dataset (v1.0), which is bundled with the Decomp toolkit (v0.1). UDS1.0 unifies five high-quality, decompositional semantics-aligned annotation sets within a single semantic graph specification—with graph structures defined by the predicative patterns produced by the PredPatt tool and real-valued node and edge attributes constructed using sophisticated normalization procedures. The Decomp toolkit provides a suite of Python 3 tools for querying UDS graphs using SPARQL. Both UDS1.0 and Decomp0.1 are publicly available at http://decomp.io.
Hiller asked Bush to name the leaders of Chechnya, Taiwan, India and Pakistan.
Hiller asked Bush to name the leaders of Chechnya, Taiwan, India and Pakistan.
Hiller asked Bush to name the leaders of Chechnya, Taiwan, India and Pakistan.
Hiller asked Bush to name the leaders of Chechnya, Taiwan, India and Pakistan.
Hiller asked Bush to name the leaders of Chechnya, Taiwan, India and Pakistan.
Universal Decompositional Semantics

• Factuality

Jo didn’t leave

Cole thought that Jo had left

Jo left
Universal Decompositional Semantics

- Factuality
- Genericity
 - E.g. pred-particular

I ate pizza every day

I ate pizza today
Universal Decompositional Semantics

- Factuality
- Genericity
- Time
 - E.g. dur-minutes

Tom left

Tom was singing
Universal Decompositional Semantics

• Factuality
• Genericity
• Time
• Wordsense
 • E.g. sup.person

Sandy led **Rufus** by a leash

-3

Sandy led Rufus by a leash

3
Universal Decompositional Semantics

- Factuality
- Genericity
- Time
- Wordsense
- Semantic proto-roles
 - E.g. volition

Derek broke his arm

Derek broke the wishbone

-3 3
Why UDS?

• Annotation flexibility
 • Crowdsourced
 • Simple questions
• Rich meaning representation
 • Flexible inferences
 • Richer analysis

🤔 Hmmm, Patient? Theme?

Was the participant changed during the event?

😊 Was the participant changed during the event?
What’s Transductive Parsing?

Hiller asked Bush to name the leaders of Chechnya, Taiwan, India, and Pakistan.
Arborescence

Assign head labels
Copy re-entrant nodes
Explicitly represent embedded predicates
Flatten syntax graphs
Linearization

Pre-order linearization
Hiller asked Bush to name the leaders of Chechnya, Taiwan, India and Pakistan.
Hiller asked Bush to name the leaders of Chechnya, Taiwan, India and Pakistan.
Hiller asked Bush to name the leaders of Chechnya, Taiwan, India and Pakistan.
Hiller asked Bush to name the leaders of Chechnya, Taiwan, India, and Pakistan.
Evaluation Metrics

• S score (Zhang et al. 2016)
 • Extension of SMATCH (Cai et al. 2013)
 • How well do two graphs match?
 • Structure and attributes

• For attributes under oracle setting
 • Pearson’s R between predicted and gold attributes
 • F1 score on binarized values (> threshold, <= threshold)
Graph Structure Matching
(Syntax included)

<table>
<thead>
<tr>
<th>F1</th>
<th>Pipeline</th>
<th>Parser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>79.74</td>
<td>81.62</td>
</tr>
</tbody>
</table>
\[
\psi(j, k) = \tanh\left(1 - \frac{|\text{corr}(\nu^j - \nu^{j*}, \nu^k - \nu^{k*})|}{|\text{corr}(\nu^{j*}, \nu^{k*})|}\right)
\]

Pearson’s R between true attributes

Pearson’s R between residuals

Systematic over/under prediction

No significant correlation present/captured

Correlation well-captured

-1

0

1
Conclusions

• Motivating
 • UDS as a dataset and task
 • Transductive paradigm for parsing

• Showing
 • Challenges of UDS parsing (scalar + structure)
 • Benefits of end-to-end transductive system

• Analyzing
 • interactions between UDS subspaces